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Introduction 
Why would a teacher be interested in designing tasks (for IBMT)? Many resources to 
shape a lesson—textbooks, tools, lesson plans, etcetera—are already available. 
However, trying to meet the needs of particular groups of students, one might 
sometimes feel the need to design one’s own tasks, series of task, and sometimes 
whole lesson series. Moreover, who wouldn’t like to be creative and try out innovative 
ways of teaching? It is good practice to question your current teaching practices at 
some point, and a way to address such questions might be to try teaching in a novel 
way. Finally, the ability to design for education is in particular useful when preparing 
for inquiry-based mathematics teaching, since tasks for IBMT are underrepresented in 
textbooks. 
 
To support such a design adventure, in this compendium we would like to share some 
ideas on educational design. The most suitable time to read this compendium as a 
teacher is when, after building some experience with educational design, you feel the 
desire to approach this in a more structured and reflexive way.   
 
Many design principles have been formulated by teachers and in (academic) resources 
that help to design or redesign tasks: to make design choices explicit, and to base design 
on successes—and not on pitfalls—from the past. An essential goal of this compendium 
is to support teachers/designers to discuss their design choices. 
 
This compendium offers reading material to support the course on design that is part of 
the TIME-project. In particular, it offers 

• a supporting structure for the designing process (section 1.3), 
• many details of the study or analysis that precedes the actual design (sections 2.1 

and 2.2), 
• an introduction to design principles (chapter 3), 
• many aspects to consider during the actual design (chapter 4). 

Bear in mind: tasks themselves don’t teach (nor do designed lesson plans, or learning 
trajectories). Teaching is the responsibility of a teacher, and depends on the teacher’s 
choices while teaching. Lesson plans help to embed tasks in a teaching session, but 
should not be designed or interpreted as a straitjacket. As a teacher, it is important to 
be able to improvise, and to act and react on students’ – always surprising – 
contributions.  
 
After reading this compendium you still might feel some doubt and difficulties while 
designing your activities and lessons, but you will have gained a language to discuss 
educational designs and the process of designing.  
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The challenges and choices of design: three example  
To illustrate the freedom of choice of approach educational designers have, below we 
present three examples of a task design for completing the square. 
 
Example 1. The first example illustrates the principle of guided reinvention. Moreover, it 
shows how a geometric model can be used to develop algebraic understanding. Step 
by step students work their way through an example. After (g) the method is set out 
more definitively through a worked example. 
 

Solve the following exercise in pairs. Check your answers with the answering model. 
An L-shape is obtained by removing a square with side 4 from a square with 
unknown side.  

 
 

a) Express the area of the L-shape in 𝑥𝑥. 
b) Compute 𝑥𝑥, if the L-shape has area 20. 
c) Compute 𝑥𝑥, if the L-shape has area 33. 

There is also a value for 𝑥𝑥 such that the area is 25. This value you cannot find by 
solving 𝑥𝑥2 + 8𝑥𝑥 = 25, reducing to 𝑥𝑥2 + 8𝑥𝑥 − 25 = 0, and decomposing. 

d) Check that 𝑥𝑥 = −4 + √41 is a solution 
 
How did we find this solution? To do this we complete the L-shape to a square: 
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e) What is the area of the added square? 
f) Express the side of the big square in 𝑥𝑥. Square this expression to find a 

formula for the area of the big square. 
The area of the L-shape is the difference of the area of the two squares 

g) Fill in: 𝑥𝑥2 + 8𝑥𝑥 = (𝑥𝑥 + 4)2 − ⋯ 
 
We solve 𝑥𝑥2 + 8𝑥𝑥 = 25 as follows 
 

𝑥𝑥2 + 8𝑥𝑥 = 25 
(𝑥𝑥 + 4)2 − 16 = 25 
(𝑥𝑥 + 4)2 = 41 

𝑥𝑥 + 4 = √41 or 𝑥𝑥 + 4 = −√41 
𝑥𝑥 = −4 + √41 or 𝑥𝑥 = −4 − √41 

 
Use g) 
add +16 both sides 
square root on both sides 
-4 on both sides 

 
h) Solve 𝑥𝑥2 + 6𝑥𝑥 = 12 in the same way. 

 
 
Example 2. The second example illustrates how emphasis can be shifted from the 
algebraic proficiency of the student to the logical order of a solving process through 
“completing the square”. The cards add an element of play to the task and promote 
discussion in pairs. To some extent the cards allow students to check their own answers. 
Task (b) and (c) give more challenge, depth, and an opportunity to solidify the procedure.  
 

In pairs you’ll receive a set of cards as in the table below. The cards show steps in 
the solution processes of the equations 𝑥𝑥2 + 6𝑥𝑥 = 12 and 𝑥𝑥2 + 8𝑥𝑥 = 25. 
 

 
𝑥𝑥 = −4 + √41 or 𝑥𝑥 = −4 − √41 

 

 
(𝑥𝑥 + 4)2 − 16 = 25 

 
𝑥𝑥2 + 6𝑥𝑥 = 12 

 
(𝑥𝑥 + 3)2 = 21 
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𝑥𝑥 + 3 = √21 or 𝑥𝑥 + 3 = −√21 
 

 
𝑥𝑥2 + 8𝑥𝑥 = 25 

 
 

(𝑥𝑥 + 3)2 − 9 = 12 
 

 
𝑥𝑥 = −3 + √21 or 𝑥𝑥 = −3 − √21 

 
 

(𝑥𝑥 + 4)2 = 41 
 

 
𝑥𝑥 + 4 = √41 or 𝑥𝑥 + 4 = −√41 

 
a) Put the cards in the right order. 
b) Explain what happens in every step. 
c) Solve in a similar way 𝑥𝑥2 + 10𝑥𝑥 = 22. 

 
Example 3. The third example illustrates the principle of worked examples. The student 
is invited to follow the calculation and reasoning of a worked example, which is 
presented in combination with the general method. In the third column the student 
mimics the examples. This task is more suitable to be done individually, without 
teacher’s guidance. It might only support more superficial understanding. 
 

In this task we teach you a new way to solve quadratic equations like 𝑥𝑥2 + 8𝑥𝑥 = 25.  
 

a) Fill in the empty spaces in the right column. 
 

Step Example Fill in 
Begin with an equation 
of the form 𝑥𝑥2 + 𝑝𝑝 𝑥𝑥 = 𝑞𝑞 

𝑥𝑥2 + 8𝑥𝑥 = 25 𝑥𝑥2 + 6𝑥𝑥 = 12 

Take half of 𝑝𝑝 and 
introduce brackets: 

 �𝑥𝑥 + 𝑝𝑝
2
�
2
− �𝑝𝑝

2
�
2

= 𝑞𝑞 

Where you subtract �𝑝𝑝
2
�
2
 

to have an equivalent 
equation. 

 
 
 

(𝑥𝑥 + 4)2 − 16 = 25 

 
 
 

(𝑥𝑥+. . . )2−. . . = 12 

Reduce to brackets left 
and numbers right of 
the equality sign. 

 
(𝑥𝑥 + 4)2 = 41 

 
(𝑥𝑥+. . . )2 =. .. 

Take positive and 
negative the square root 

𝑥𝑥 + 4 = √41 or 𝑥𝑥 + 4 = −√41 𝑥𝑥+. . . =. ..      or 𝑥𝑥 + ⋯ =. .. 

Isolate 𝑥𝑥 𝑥𝑥 = −4 + √41 or 𝑥𝑥 = −4 +
−√41 

𝑥𝑥 =. ..             or 𝑥𝑥 =. .. 
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b) Now apply the same method to the equation 𝑥𝑥2 + 10𝑥𝑥 = 22 

 
 
Designing for mathematics education requires a careful consideration of what you want 
students to do and learn and how this can be supported by tasks and teaching methods. 
Many aspects may play a role. What do your students need? How do I accommodate 
for individual differences? How do I vary activities? How do you adapt for the time of 
day, week, or year? How much inquiry, reinvention, and higher order thinking do I want 
to invite to? Do I want to stimulate cooperation? Do I want elements of play?  
 
In the TIME project we develop tasks and lessons that promote inquiry-based learning. 
In this guide design features that support inquiry will therefore be quite prominent. 
Nevertheless, most aspects of design that we discuss will apply to other educational 
designs. 
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1. Shaping the design process 
1.1 Design as a process of inquiry 
As is mentioned in the document TIMEless: A short introduction to Lesson Study – 
TIMEless ideas for professional development (Bašić, 2020): 
 

There is a striking similarity between Lesson Study as an activity for teachers, and 
the experiences aimed at for students in inquiry based education: namely, the 
principle that you learn from studying a problem through experimenting 
hypothetical solutions. For teachers, problems are related to students’ learning 
(with specific and more general goals), and you keep finetuning your experiment 
until you are ready to share your findings with others (p.12) 
 

This process of inquiry is not limited to the context of Lesson Study. Every process of 
design should be a process of inquiry, in the sense that you go through stages like the 
ones in Figure 1.1. 

 
Figure 1.1. A cyclic model for phases of a process of inquiry 

 
Let’s describe how these stages fit into this cycle. The need for new design comes from 
a conclusion, based on the reflection on an observation of students’ or teachers’ 
behaviour: obstacles they meet, difficulties they have in the process of learning and 
teaching, the learning goal you aim at and conditions like time, space and resources 
available. But sometimes, it also comes from observed changes in the national 
curriculum, or new goals and directions chosen at the school level.  
 
The observed situation gives rise to concrete questions with respect to learning and 
teaching. The hypothesis would be a task, lesson plan, or hypothetical learning 
trajectory, designed on the basis of a study. The experiment is the actual lesson; which 
is then observed and reflected upon, from which conclusions are drawn. These may, in 
turn, leave certain issues unresolved or give rise to new questions, and hence a second 

Observation

Reflection

Conclusion

QuestionStudy

Hypothesis

Experiment
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cycle could begin. This compendium focusses on how the questions lead to a 
hypothesis on basis of a study.  
 
Concrete design advice 

- See your design as an inquiry, an experiment, a continuous, cyclic process 
- Test your hypotheses about how your design contributes to learning, and use 

your insights to improve the design of your teaching 
 
1.2 Design as part of Lesson Study 
Lesson Study provides a perfect framework to implement a continuous, possibly cyclic, 
design process. Design happens on many scales ranging from the individual teachers – 
working to improve lessons and lesson materials – to the national level where experts 
develop a curriculum and curriculum resources. In Japan Lesson Studies take place on 
three levels: at schools, on district level, and on a national level. Sometimes, if time 
permits, lesson designs are improved and implemented another time. Moreover, in all 
these situations (new) insight and knowledge into teaching can be acquired. 
 
In Figure 1.2 you find the phases of a Lesson Study as described in TIME Lesson Study 
Guide. 
 

 

 
See how Figure 1.2 fits in with Figure 1.3: “Reflection” in 1.3 includes “Reflection and 
Conclusion” from Figure 1.2, and similarly “Study” includes “Study and Question”, 
“Observation” includes “Experiment and Observation”, whereas the Planning in 1.3 is the 
forming of a plan or “Hypothesis” in 1.2. The model in Figure 1.3 emphasizes how the 
period of “Study” and “Planning” may overlap. 
 
The study phase that precedes the design of a lesson plan is called kyozaikenkyu in 
Japanese Lesson Study terminology. One can distinguish four steps in this study 
(Watanabe, Takahashi, and Yoshida,  2008): understand the scope of the topic and how 
it fits into a larger teaching sequence;  understand students’ pre-knowledge; understand 
the mathematics of the topic; and explore potential problems, activities, and 
manipulatives. It is interesting to see how these steps match the phases of western 

Figure 1.2. Phases of Lesson Study, taken from (Bašić, 2020), an adaptation of a 
diagram by Stigler and Hiebert (1999) 

STUDY (1)  PLANNING (2),  (5) 

OBSERVATION (3),  (6) 

REFLECTION (4),  (7)  SHARING (8)  
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traditions of analysis for educational design. These steps of study – or analysis – will be 
discussed in more detail later in this guide. The result of this study leads to the 
production of a gakushushido-an (lesson proposal). According to Lewis (2002) this could 
comprise many things: the name of the unit, the unit objectives, the research theme, 
current characteristics of students, the learning plan for the unit, which includes the 
sequence of lessons in the unit and the tasks for each lesson, plan for the research 
lesson, which includes (aims of the lesson, teacher activities, anticipated student 
thinking and activities, points to notice and evaluate, materials, strategies, major points 
to be evaluated, and copies of lesson materials, e.g., blackboard plan, student handouts, 
visual aids), and background information and data collection forms for observers (e.g., a 
seating chart). This can be compared with the “modules” that were produced in the 
MERIA-project1. In the TIME-project most of these aspects are part of the TIMEplate2. 
 
1.3 Outline of a design process 
The phases Study and Planning of Figure 1.2 encompass the design process. In the 
scheme below the aspects of this design phases are visualized, starting from the 
educational problem to be inquired towards the actual design process (Figure 1.3).  
 
We acknowledge that educational design could last a long time when all these aspects 
are addressed in full detail. Moreover, the boundaries between the aspects are fluent: 
for example ideas on what to teach (mathematical analysis) and how to teach (didactical 
analysis) sometimes follow from the same study or reflections. Nevertheless, awareness 
of these aspects is useful. For some designs the emphasis might be on a mathematical 
analysis, while others might need more a didactical exploration. In the following sections 
the successive stages are briefly addressed in connection with potential design tools.  
In section 2 these stages are further elaborated.  
 
Concrete design advice 
Educational design consists of various phases: setting goals, mathematical analysis, 
didactical analysis, preparation of design, and actual design. Plan to spend time on 
each phase. 

 
 
 

 
1 https://meria-project.eu/activities-results/meria-teaching-and-learning-modules 
2 https://time-project.eu/en/intellectual-outputs/template-lesson-plans-and-practice-report 

https://meria-project.eu/activities-results/meria-teaching-and-learning-modules
https://time-project.eu/en/intellectual-outputs/template-lesson-plans-and-practice-report
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Figure 1.3: Stages of a design process. These are outlined in the next section. 
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2. Analysis for design 
In this chapter we discuss the scheme in Figure 1.3 in more detail. Designing a task or 
activity can be motivated in many ways, for example initiated by a question or a need 
for an alternative approach to a certain topic, or a desire to foster a specific skill – 
possibly not covered by the textbook. The Lesson Study Guide (Bašić, 2020) contains an 
extensive discussion on the process of arriving at goals for a design. Before you start 
with designing it is helpful to perform an analysis from a mathematical perspective and 
from a didactical perspective. These forms of analysis are addressed below.  
 
2.1 Mathematical analysis 
A mathematical analysis focuses on a description and analysis of the mathematics of 
the learning goals. New ways of understanding the mathematics by the designer may 
inspire designs for new ways of teaching: meanings that teachers attribute to 
mathematical topics have a strong influence on meanings their students will develop 
(Thompson, 2013). Such an analysis may also inspire to new situations from which the 
mathematics arises, and it helps to understand how the topic is related to other 
mathematics.  
 
Levels of understanding 
Mathematical concepts often have several levels of understanding (e.g. Tall, 2013). For 
example, look at the notion of function. A basic understanding of functions is as an input-
output machine, for example a [times 4]-machine: put in number 3, out comes number 
12. A next level could be a description of such a machine by an equation using an input-
variable 𝑥𝑥  and an output-variable 𝑦𝑦 : 𝑦𝑦 = 4𝑥𝑥 . A next level could be that you name 
functions (e.g. 𝑓𝑓) and see them properly as objects with properties: 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥. Next could 
be the foundation of functions in set theory: a function 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is a set of ordered pairs 
in 𝑋𝑋 × 𝑌𝑌, so that for every 𝑥𝑥 ∈ 𝑋𝑋 there is exactly one 𝑦𝑦 ∈ 𝑌𝑌 that together form such a pair 
(𝑥𝑥,𝑦𝑦). There may even be more levels. Learning often is supported by a progression 
along such levels from situational and concrete to general and abstract. 
 
The point is that the designer benefits from being informed by such a wider picture of 
the concept. This picture, with connections between representations, language and 
ways of working on each level, informs the designer for making a choice in a 
mathematical approach of the concept; to find a level that is most suitable for the 
student. It allows the designer to consider how the task at stake may be part of a more 
encompassing learning trajectory in which the concept is developed. 
 
Relation to other mathematical concepts  
Mathematical concepts never live on an island: The understanding of a concept 
depends on the understanding of many other concepts. As a designer it can help to 
visualize the concept in a concept map (se Figure 2.1), in which you chart the relation of 
the concept to other concepts. This can, for example, be done using software from 
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https://cmap.ihmc.us/. A conceptual analysis identifies the concept(s) at which the 
design focuses and possible choices to limit the content (Novak & Canas, 2008). So, 
concept maps, as design tools, help to visualize the targeted conceptual structure as a 
step in the design process. They can also be used as a teaching tool to demonstrate or 
generate the conceptual relations and provide a framework for learning, or to monitor 
and assess the students’ conceptual structure and to help them to become aware of it. 
 
For example, the notion of a function is closely tied to the notion of a graph. The set 
theoretic definition of the graph of a function 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 actually leads to exactly the same 
set as defines the function: 

graph(𝑓𝑓) = ��𝑥𝑥, 𝑓𝑓(𝑥𝑥)� ∈ 𝑋𝑋 × 𝑌𝑌| 𝑥𝑥 ∈ 𝑋𝑋� 
This leads some to the viewpoint that the visual graph (e.g. parabola) and an explicit 
symbolic description (𝑦𝑦 = 𝑥𝑥2) are two representations of the same thing. An (incomplete) 
table, like 

𝑥𝑥 -2 -1 0 1 2 
𝑦𝑦 4 1 0 1 4 

   
is seen as another (partial) representation of this same underlying object. Mathematical 
concept can be closely related, even seen as representations of the same underlying 
object, and should therefore not be taught in isolation. On contrary, their juxtaposition in 
a design supports learning.  

 
Figure 2.1. a concept map of the notion of function 

Concept maps can also be used in teaching. For instance, in a classroom discussion, by 
collecting and grouping words that emerge when talking about a concept, or as a 
(formative) assessment task when the teacher provides parts of a concept map together 
with empty spaces and some words to be used, and asks students to fill in the gaps. 
 

https://cmap.ihmc.us/


 
 

14 
 

Pre-knowledge  
Within a network of related mathematical concepts, it is important to identify the ones 
the students should already be acquainted with: their pre-knowledge. Any gap in pre-
knowledge has consequences for the learning process. A design should, if possible, 
include tasks that activate or assess necessary pre-knowledge of the students. Pre-
knowledge needs to be formulated not exclusively in term of formal mathematical 
knowledge (language and representations). The designed tasks are more likely to be 
effective when they also connect to students’ informal knowledge and real-life 
experiences. Formal mathematics becomes meaningful by grounding it in meaningful 
previous experience and pre-knowledge.  
 
The iceberg metaphor visualizes the following idea: students’ more formal knowledge 
of mathematical manipulations, as, for example, expressed in their notebooks—the 
visible top of the iceberg—should be supported by previous experiences and pre-
knowledge—invisibly, under the water surface (Webb, 2017). So, the visible more formal 
mathematical manipulations are kept afloat (i.e. meaningful) by underwater floating 
capacity formed by informal experiences and knowledge (see Figure 2.2). The designer 
needs to look under water for those experiences, and find tasks that reactivates them. 
 

Figure 2.2: An Iceberg model for equations  
 
For example, in Figure 2.2, the ability to formally solve linear equations is supported by 
more informal tasks with scales, beginning with the relative weights of pears, lemons, 
and bananas, and then more abstractly, with bags of an unknown number of balls. 
Additionally, this is supported by solving sums with one number blanked out, and later 
the method where part of a sum is blocked, to solve for what is underneath. 
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The iceberg helps to identify potential pre-knowledge that might be revisited or needs 
to be (re)emphasized. Furthermore, one needs to be aware that icebergs for topics can 
be connected (e.g. Figure 2.3). This awareness, and also the activity of making the 
floating capacity and these connections explicit is an important activity for teachers and 
for students.  

 
 

Figure 2.3: A cascade of connected Icebergs surrounding the derivative 
 
Historical analysis  
In preparation of a design one could study the origins of the mathematical topic. 
Knowing where a topic comes from, to what purpose it was developed and what 
problem it solved, can inspire task design. It can also support a didactical 
phenomenology (see next section). For example, Galileo developed mathematics of 
change in the context of investigating free fall, and Euler and Johann Bernoulli thought 
of a function as an expression in variables and constants. This may also be a good 
entrance to the concept for students, even though it is not consistent with modern 
notions and experiences. Clairaut and Euler introduced the notation 𝑓𝑓(𝑥𝑥), which was an 
important step as it introduced the idea of naming functions. This could similarly be 
emphasized as an important step in the students’ development. When a historical 
sequence of events guides your design, this is also referred to as a genetic approach. 
 
Concrete design advice 

- Analyse the mathematical topic, learn more about it 
- Think about the levels at which the topic can be taught 
- Make a concepts map for the involved concepts, including relation to other 

topics 
- Chart the pre-knowledge, including an iceberg model for the involved 

underlying informal knowledge 
- Look into the history of the topic 
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2.2 Didactical analysis 
A didactical analysis focusses on the learning and teaching of the mathematical topic. 
What makes it hard to learn? What makes it hard to teach? What is known about the 
learning and teaching of the subject? Where lie the opportunities to explore in the 
design? 
 
The entry level of students also is part of a mathematical analysis: finding out how 
concepts and propositions depend on other concepts and procedures. In addition, when 
students have been taught topics that are fundamental, we should also take into 
account what the level of 'familiarity’ is: do they (still) really understand the topic, do they 
feel comfortable with the topic or is it still challenging? This affective dimension is also 
relevant when building on prior knowledge. Furthermore, seen from a didactical 
perspective one should consider whether students have experiences in real life (i.e. with 
phenomena) or in other subjects like physics or biology that provide starting points for 
learning. In particular for mathematics education, the role of representations is 
fundamental for expressing patterns and structures in space or number, and for 
communicating about new generalizing concepts or procedures. Thus finally, we will 
address the analysis of representations and possible progressions of representations 
from informal to formal.  
 
Analysing the teaching-learning situation several aspects that you have also seen in 
the description of the gakushushido-an (lesson plan) appear. We come back to these 
aspects in the sections on the preparing the design and design phase, in particular with 
respect to IBMT. 
 
Learning obstacles  
Learning obstacles are the aspects of a topic that cause students problems to learn it. It 
is important to identify the learning obstacles of the topic that the design addresses. The 
obstacles may have already come up when formulating the challenge and determining 
the goal for the design. The design team could produce a list with obstacles based both 
on teachers’ personal experience and findings from educational literature. At the surface 
are the mistakes that students often make, and below the surface there might be the 
underlying obstacle that is the cause.   
   
A well-known example of a learning obstacle is the illusion of linearity (De Bock, 
Verschaffel, & Janssens, 1999). Students have the tendency to assign the property of 
linearity to functions that don’t have it. For example: (𝑥𝑥 + 𝑦𝑦)2 = 𝑥𝑥2 + 𝑦𝑦2 , 1

𝑥𝑥+𝑦𝑦
= 1

𝑥𝑥
+ 1

𝑦𝑦
, 

�𝑥𝑥 + 𝑦𝑦 = √𝑥𝑥 + �𝑦𝑦, and this tortuous list goes on and on. More generally, students tend 
to overgeneralize rules, and many other explanations can be given. 
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The challenge might stem from the nature of mathematics or the order in which the 
curriculum introduces concepts to students. Brousseau has studied such phenomena in 
mathematics education and described them under the name “obstacle” (2002). For him, 
an obstacle is a piece of knowledge that applies correctly in one context but shows to 
be wrong once the context is generalized (expanded, brought to a higher level of 
complexity).  For example, it is true that every integer has an immediate successor, but 
this claim is not true (we could even say it does not make sense) once we consider the 
bigger set of rational numbers. Similarly, multiplying a positive number with a positive 
integer will yield a bigger number, but this is not true anymore if we multiply a positive 
number with a positive number (a fraction or a real number) less than 1. A little bit 
different example comes from the French educational system: there is a strong 
emphasis to use decimal numbers and approximate values from a very early age and 
students are used to results with two decimal digits, so when they encounter irrational 
numbers many misconceptions may surface (such as tendency to think and use that pi 
is equal to 3.14).  
 
Knowledge of these obstacles should impact the design: the obstacles should be 
addressed. One way to address obstacles in a design is to ask a question that puzzles 
the students because of the obstacle, and challenges them to adopt their previous 
conceptions A first draft of the design should be checked with the list of potential 
obstacles.  
 
Didactical phenomenology 
A didactical phenomenology is an investigation into situations that “beg to be 
mathematized” by the target knowledge. This means that the natural mathematical 
approaches to the situation are towards the mathematical topic to be addressed. These 
situations can be found outside or within mathematics. Let’s give two examples. 

 
Figure 2.4. Which is higher, the bridge or the tower? Why? 
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Example 1. In the MERIA-practical guide the following task based on the two photos in 
Figure 2.4 is presented. The question is: which s higher the bridge or the tower. This 
situation begs to be mathematized by the notions of sight lines and scaling. There is 
simply no way of addressing the issue without developing these notions, even if 
students don’t name them that way, or reinvent the full mathematical concept. 
 
Example 2. To illustrate that a context can be purely mathematical, consider the world 
of integer sequences. A familiar game or challenge is to be presented with the beginning 
of a sequence 1, 3, 7, 15, 31,… and then guess the next one. Students can try to solve or 
create such puzzles. A next step could be to classify sequences into various kinds, 
arithmetic or geometric – but at first in their own terminology. This context begs to be 
mathematized by recursive and/or direct formulas. 
 
As is clear from these examples, contexts can be used in a fruitful way, offering students 
meaningful situations as a starting point for mathematizing. The context has features 
that support informal and more formal mathematical reasoning. So the context is not 
just dress up, or just showing that the mathematics is useful, it invites and supports 
mathematical reasoning by being familiar and meaningful to students.  
 
Representations  
Another aspects to analyse as educational designers is the representations that are 
associated to a mathematical topic. For functions this may be: the functional notation 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 , or some notation involving an arrow 𝑓𝑓: 𝑥𝑥 → 𝑥𝑥2 , graphs (the picture of a 
parabola), tables, pictures like 

 
or 

 
The understanding of an aspect of a topic may be based on a certain representation. So 
being able to reason about injectivity using the last diagrams does not imply that 
students are able to reason about injectivity using a graph or a formula. Educational 
design should aim to address multiple representations and support students to connect 
them. Note how representation usually play an important role in the iceberg model. 
 
How has the educational challenge been addressed before?  
Even though it can be interesting and joyful to reinvent the wheel, and reinvention can 
be a good learning experience, it is often not necessary, and slows teachers’ 
development of their practice. Knowledge about how to address educational 
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challenges can come from (academic) literature and from experienced teachers—as we 
shall also discuss when introducing the notion of design principle. It can be beneficial to 
discuss the design issues with experienced teachers, within or outside the design team. 
Additionally, on many educational topics there is a wealth of academic literature. 
Fortunately, more and more publications are open access these days. Additional 
resources could be for example teachers’ magazines and websites.  
In the example below we illustrate how various parts of the analysis influenced the 
design choice for the slide scenario of the MERIA-project. 
 

Example: Slide task (from the MERIA-project). 
This task that aims at introducing the derivative of function. We describe how aspects 
of study informed the design.  
 
Mathematical analysis 
The concept of derivative builds on many subjects previously attended to at school: 
among others, function-concept (see Figure 2.1), linear functions and their slope, sight 
lines and tangent lines, growth, proportion. Figure 2.2 shows an iceberg analysis of the 
derivative. 
 
A basic level of understanding of the derivative in a point from a geometric point of 
view is that it is the slope of a tangent line at that point. From a non-geometric point 
of view this is the instantaneous growth of a quantity. In textbooks both points of view 
are usually addressed. A next level is to view the derivative as a function associating 
slope to an input, or value of a quantity. A next, higher level is to understand the 
derivative in a formal definition using limits. The slide task addresses the geometric 
point of view on a basic level. 
 
An interesting finding of a historical analysis is the following. The modern definition of 
derivative by Newton and Leibniz using limits was preceded by (1) Euclid, who already 
defined tangent lines in a geometric way (2) mathematicians like Descates, Fermat, 
and Hudde who computed the slope of polynomial curves in an algebraic way. This 
opened the designers’ eyes to the possibility that such an algebraic approach might 
be more intuitive for students. Let us briefly illustrate this approach: The line described 
by 𝑦𝑦 − 1 = 𝑚𝑚(𝑥𝑥 − 1) is tangent to 𝑦𝑦 = 𝑥𝑥2 , exactly when the intersection at (1,1) is a 
double point, that is, when the equation 𝑥𝑥2 − 1 = 𝑚𝑚(𝑥𝑥 − 1) has 𝑥𝑥 = 1 as a solution with 
multiplicity 2. Rewriting the equation as (𝑥𝑥 − 1)(𝑥𝑥 + 1 −𝑚𝑚) = 0, reveals that this is the 
case iff 𝑚𝑚 = 2. This indeed is the slope of the parabola at (1,1). Actually, this approach 
has been transformed into a lesson series by Michael Range (2018), which is something 
to discover looking into prior educational approaches to the subject – which is part of 
the didactical analysis. 
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Didactical analysis 
There are plenty of obstacles and difficulties for students with the concept of 
derivative. A major issue is for students to grasp and remember the meaning of the 
derivative (e.g. as the slope of the tangent line) after they have learnt the rules and 
procedures for calculation. Another issue is the limiting procedure involved in the 
definition: Often the derivative is introduced before limits could be properly defined. 
A well-known obstacle from the geometric perspective is that students consider a 
tangent line as a bounding line (a line interesting the curve just once), since the first 
tangent lines the encounter (for e.g. circles and parabola) are all bounding lines. The 
slide scenario aims very much at meaning making. Moreover, it invites students to 
develop the notion of slope of a curve in informal ways, postponing the issue of limits. 
The understanding of a tangent line as a bounding line is considered a vice: It is one 
of those notions under the water in the iceberg model. 
 
The slide task was an immediate consequence of a didactical phenomenology. What 
could be a context that begs to be mathematized by “the slope of a curve”? What 
problem is solved by constructing a tangent line? What reason can we give to 
mathematize and, in particular, quantify this situation with a tangent line. This gave rise 
to the task of designing a slide with a bended bit and a straight bit, in such a way that 
the point where they meet is smooth, no bump. The request for a equations for the 
curve and line invites students to express the slope as a number. 
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 For the derivative the following scheme of representations can be found in academic 
literature (Round et al., 2015) 

 
Note how here the representations are ordered and unravelled with respect to the 
limit-definition of the derivative. The scheme could support the teacher in addressing 
each step in this definition from these various perspectives allowing students to form 
a rich concept. The slide scenario precedes these considerations and is concerned 
with forming informal building blocks to which the more formal definition can be 
connected. However, we expect the representations from this scheme to occur in 
students’ informal approaches to the task. 
 
Finally, various non-standard approaches to teaching the derivative can be found in 
textbooks and academic literature. We already mentioned the algebraic approach by 
Michael Range. Additionally, Tall elaborated on an approach emphasizing that 
zooming in on a graph reveals the local linear character of a differentiable function 
(Tall, 1985).  

 
By studying the various didactical approaches, the teacher and the designer anticipate 
a response to the various informal approaches.  
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 Concrete design advice 
- Determine the entry situation of the students and the goals from a cognitive 

and affective point of view 
- Find the learning obstacles in the topic from experience and literature 
- Perform a didactical phenomenology 
- List the involved representations of the involved concepts 
- Find out how the educational challenge has been addressed before. Consult 

experienced teachers and academic and/or other literature, websites,... 
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3. Design principles 
3.1 An introduction to design principles 
A design principle is a way to summarize an advice for design characteristics and 
procedures. In mathematics education the notion finds its origin in design research 
(Bakker, 2018). Based on such principles one could design (hypothetical) learning 
trajectories and develop theories on how to teach a subject (local instruction theories). 
A design principle does not specify the details but takes the form of a general heuristic 
of what to do in certain educational situations. It is always based on certain norms and 
values of what good education is. For this reason, design principles could contradict 
each other. 
 
As a teacher, it is important to be able to articulate what is the justification for your 
decisions in particular when you design a lesson or task. In the same way, it is important 
for educational researchers to articulate their findings. For educational researchers it is 
common practice to express their hypotheses and findings in terms of design principles. 
In the TIME project we investigate whether teachers could express themselves using 
design principles as well. As such, design principles could form building blocks for 
communication amongst teachers, and between researcher and teachers; they serve as 
a means to structure thoughts and discussions on educational design. 
 
So, design principle express researchers’ or teachers’ (as we propose) knowledge about 
education. This knowledge develops from research and experience, in particular from 
Lesson studies (for teachers) and from design-based research for researchers. A design 
principle not only expresses what we should design, but also how, when and why; that 
is, it expresses a rationale for the design. In this way, it brings researchers and teachers 
together facilitating not only on the practicalities of an educational design, but also on 
the possible underlying theoretical considerations. This is summarized in the diagram of 
Figure 3.1. 
 

 
Figure 3.1. How teachers’ and researchers’ knowledge could be shared and compared 

using design principles 
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Example of a design principle: 
 
The activity principle. Teach students to mathematize (to do mathematics) – instead of 
teaching them ready-made mathematical results. To mathematize means both to 
translate real-world situations into mathematical representations and to develop 
those representations further into more abstract and formal mathematics (to prevent 
mathematics as an isolated discipline, an isolated set of concepts and procedures). 
So, the task or lesson should not be based on a ready-made mathematical result 
presented to students. Instead, the task should allow the students to develop this 
result themselves. 

 
Van den Akker (2013) proposed a general (and rather mathematical) form for a design 
principle. We present it a bit less formally. 
 
A design principle is an advice that  

A. is concerned with the characteristics of tasks, lessons, lesson series, or 
curriculums (what?)  

B. may include procedures to arrive at such characteristics (how?) 
C. may include conditions about when it applies, in particular it may relate to the 

goals of the intervention (when?) 
D. is based on theoretical arguments for those characteristics and procedures 

(why?), and/or 
E. is based on empirical arguments for those characteristics and procedures 

(why?) 
 
Let’s apply this to the above example, the activity principle. The activity principle is 
formulated in terms of the general characteristics of a task or lesson, and not with the 
specifics—it applies to more than just a current design. It gives some clues on 
procedures to develop this principle: students develop results; teachers do not present 
them ready-made. The activity principle, as phrased above, does not give any specific 
conditions to when it applies – and actually this is an interesting point of discussion. 
Since developing results can be time-consuming, some have practical objections 
against applying it too often.  The counter argument is that mathematizing realizes 
deeper learning, so you learn more through fewer activities. Moreover, the activity 
principle need not be invoked for every task, but maybe in particular for tasks where 
meaning-making is a challenge. This example, in turn, illustrates how formulating a 
design principle can be the starting point of a discussion on choices in design. 
 
The activity principle, in overview.  

• Characteristic: students mathematize, develop a result themselves. 
• Procedure: finding a suitable situation for mathematizing; setting the problem 

in the right way. 
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• Conditions: you need enough time! Mathematization involves developing new 
mathematical ideas. 

• Theoretical argument: TDS and RME both provide theoretical support for the 
activity principle. 

• Empirical argument: our test implementations in the MERIA-project showed in 
various scenarios that students can mathematize and jointly arrive at a result. 

 
Below is a list of questions that relate to design principles that a team could ask 
themselves during a design process. 
 
As you work with colleagues and you make decisions on tasks and lesson design, you 
could ask yourselves the following questions: What are we doing, described 
generally? Are we following a principle or a rule? How are we doing it? Why are we 
doing it this way? Why do we think this will work? Would it matter if we did it 
differently? Does this align with any theoretical knowledge from mathematics 
education? Does it align with the practical knowledge of one of us? Are we basing 
ourselves on a principle that is new to us? 
 
Ask these questions, for example, for the use of tools, contexts, the problem itself, 
work in groups or not, etc.   

 
In particular, it is important to coin the question: why do we think this will work? In a 
lesson study this allows to formulate more precisely which underlying ideas are at stake 
in the design. During the observation of a study lesson, observers could try to see 
whether the formulated principles work out in the anticipated way. In this way, the 
participants not only learn about their specific designs, but also about the underlying 
principles. 
 
Design principles are based on two knowledge bases regarding teaching practices. 
Knowledge or advice is gained from theoretical arguments, for example taken from 
educational literature, and from empirical arguments. The latter could refer to the 
experimental data in literature, but also to the personal experience of the teachers or 
designers. If the principle is discussed as part of a theory, then there is no need to add 
the theoretical arguments to each principle. Additionally, for example, sometimes the 
procedures need not be specified, because they are obvious from the characteristics. 
There are many theoretical and empirical arguments for the activity principle; to mention 
two: actively developing a mathematical result allows students to develop it based on 
results that are meaningful to them, thereby leading to the new result being meaningful. 
Students that develop a result themselves experience ownership, which, in turn, results 
in a positive attitude towards the result, towards their own mathematical abilities, and 
towards mathematics in general. In literature on RME one can find many examples of 
the activity principle implemented, e.g. (Gravemeijer, 2020), and within the TIME project 
team many members have personal experience with this. 
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The example below highlights how the emergent modelling principle from RME shaped 
the slide scenario that was discussed before. 
 

Example: Slide task (from the MERIA-project). 
The intervention is a reinvention task aiming at the concept of tangent line and slope 
of a curve.  
 
Task: design a slide by creating equations for a line and a bended curve that meet 
smoothly. 
 
Design principle. One of the principles for this task design is the emergent models 
principle. This principle focusses on the purpose of reinvention of mathematical 
concepts: learning trajectories in which a concept is developed. The principle 
describes the characteristics of the problem situation and how the teacher should go 
from there. The problem situation should invite students to develop informal models 
based on what is meaningful to them. The teacher should then facilitate the process 
in which the students develop these models into more formal mathematical models.  
 
The designers should thus invest time in finding situations that provide starting points 
for students to develop those informal models. The designer should try and predict 
what those informal models would be and how a process could be facilitated to 
develop those models. These steps could be seen as the advised procedures. The 
slide task has been shown to offer enough opportunity to students to develop informal 
models on tangent lines and slope.  
 
The theoretical arguments for the emergent models principle include a detailed 
description of the various stages of development of a model: from informal to formal. 
These stages have been observed in teaching experiments and reported in literature, 
e.g. in (Gravemeijer, 2020). 

 
 
Concrete design advice 

- Base the design not just on ad-hoc decisions, but on design principles. For 
almost any aspect of the design ask the questions: why do we do it this way? 
Why do we think this will work? 

- Formulate those principles in terms of desired general characteristics and 
describe procedures to arrive at such characteristics 

- Make sure you can justify those principles by including supporting theoretical 
or empirical arguments 

- While observing a lesson and discussing it afterwards, not only learn about the 
lesson, but also about the underlying principles. 
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3.2 Preparation for design: choice of design principles 
Before concrete tasks are designed, the design team could settle on a teaching 
approach. A teaching approach can be supported by theoretical frameworks. In the 
TIME project participants promote and investigate Inquiry-Based Mathematics Teaching 
(IBMT): a “teaching approach that allows students to be engaged in an activity which 
leads them to adapt their existing, or construct new, mathematical knowledge” 
(Winsløw, 2017).  According to Marshall et al. (2017), inquiry challenges students to 
explore concepts, ideas and phenomena before formal explanations are provided. 
Inquiry-based learning fosters students’ understanding of the meaning and foundations 
of science (Furtak et al., 2012) and supports students’ development of research skills 
(Gormally et al., 2009). For the MERIA and TIME projects we adopted Realistic 
Mathematics Education and the Theory of Didactic Situations as theoretical frameworks 
for designing for IBMT. In the next two section we rephrase those theories in terms of 
some design principles. 
 
Design principles from the theory of didactical situations 
As explained in the MERIA handbook, TDS models didactical situations as built from 
certain phases (devolution, action, formulation, validation, institutionalisation) which all 
require specific attention when designing the situation. Below the most important 
attention points are formulated as design principles for IBMT. 
 
Target knowledge principle. An inquiry-based didactical situation is always designed 
for the students to achieve some specific mathematical knowledge, the target 
knowledge. The design process begins by a careful preliminary analysis of the target 
knowledge: How does the target knowledge relate to what students already know? 
How is it usually taught, with what results? What limitations and obstacles of the usual 
teaching methods should the inquiry-based situation help students to overcome? (If 
no serious limitations or obstacles can be identified, IBMT may simply not be needed 
in this case!) 
Milieu principle. Inquiry based didactical situations are designed to let students build 
the target knowledge while interacting with a didactical milieu, consisting of a problem 
to solve, and some resources (interaction with other students, the knowledge the 
student group already has, and possibly also material artefacts, texts, computer 
technology) which they can use to solve the problem and thereby construct the target 
knowledge. The milieu can vary in different phases of the situation (action, formulation, 
validation) and is regulated by the teacher according to the designed lesson plan. An 
explicit analysis of how the students could interact with the milieu (hypotheses about 
their action, formulation and validation) is a crucial part of the lesson design. 
Adidactic potential principle. In IBMT it is essential to devise situations that have 
adidactic potential which means that the milieus students interact with can provide 
feedback (to students’ actions, formulations and validations) – so that they construct 
solutions to the problem by interacting with the milieu, not only with the teacher. 
Adidactic potential in validation situations are of particular importance, so that 
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formulations are validated against the milieu and not by force of the teachers’ 
authority (in which case the validity of the target knowledge may rely only on the 
didactical contract – i.e. on trust in the teacher or, worse, in simple compliance with 
authority).  
Devolution principle. To establish a truly adidactic situation, the students must accept 
that the teacher devolves responsibility for constructing knowledge to them – in 
contrast with the “normal” type of didactical contract where teachers communicate 
knowledge directly, and the students’ responsibility is limited to applying it in action 
and formulation phases. 
Game principle. For the adidactic potential to be realised, the situation must stimulate 
students to act as if they are trying to win a game with specific and clear-cut rules – 
not with the teacher, but with the milieu devolved by her. Winning the game means 
achieving (part of) the target knowledge. In adidactic phases, the teacher could at 
most recall the rules given in devolution phases. The explicit analysis of the milieu is 
supposed to ensure this is plausible, but it can of course only be discovered through 
experiments whether the analysis was correct. 
Institutionalisation principle. When students have achieved (including validated) some 
piece of the target knowledge, the teacher must still connect students’ results to 
“official formulations” of the target knowledge, which may differ at least in form and 
frequently also in generality from what the students constructed, but still relates to it 
in the point of view of the students. This is fully acceptable as long as the validation 
remains rational to students; it is necessary to ensure the students’ new knowledge 
can be used in other situations. 

 
Example: Slide task (from the MERIA-project). 
Let us return once more to the slide task to illustrate some design principles from TDS. 
  
One way to enrich the milieu of the slide task is to allow students to use GeoGebra (or 
another dynamical geometry tool). If students graph their solutions, they have a way 
to validate their results without help of the teacher (adidactic potential principle). 
Applying their everyday knowledge of smoothness, students can judge whether their 
solution is good or can be improved. 
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Figure 3.2. by dragging and zooming students can evaluate whether the line and 

curve meet smoothly and form a suitable slide design 
 
The scenario for the slide task was designed according to the phases as advocated 
by TDS. The milieu is devolved to the students (devolution principle), that is, after 
sharing the problem, teachers refrain from scaffolding or helping students with 
respect to their problem approach. After students have worked on their approaches, 
their results are presented to the rest of the group, followed by a phase of classroom 
validation. In this phase the students evaluate the quality of the solution and of the 
chosen approaches. Which solution are good/better? Were these good solutions 
constructed in a sound way? 
 
For the slide problem the winning strategy is to construct a tangent line to a curve in 
a point (or two tangent curves). The crucial ingredient for this is the slope of the curve 
at this point. Since understanding the slope of a curve is the learning goal the task, in 
this way the winning strategy relates to the learning goal of the task (the game 
principle).  

 
To summarize, IBMT focuses, according to TDS, on realising adidactic situations of 
action, formulation and validation, that involve rich and carefully prepared (and 
devolved) milieus for students to interact with. Common teaching often begins with 
institutionalisation, followed by limited adidactic action and formulation phases, and 
finally didactic validation (by the teacher). More responsibility is thus to be assumed by 
students, with less apparent control for the teacher. However, a careful design – not 
forgetting institutionalisation in conclusion – can make up for that, even if realizing such 
situations is more demanding for both students and teachers, especially if most of their 
previous experience come from what we called “common teaching”. The benefit of 
making such efforts is not minor: more solid and autonomous knowledge gained by 
students, as it is based on reasoning and mathematical necessity - rather than on 
memory, compliance and authority. 
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Design principles from realistic mathematics education 
Below we present six design principles from realistic mathematics education (van den 
Heuvel-Panhuizen, Drijvers, 2020). The presentation here focusses on the characteristics 
and not so much on the procedures for implementation or theoretical and empirical 
arguments. More on the theoretical background can be found in the MERIA practical 
guide (Winsløw, 2017). More details on the implementation procedures, as well as 
empirical studies can be found in the many resources on RME, c.f. the references in (van 
den Heuvel-Panhuizen, Drijvers, 2020). 
 
The activity principle. Teach students to mathematize (to do mathematics) – instead 
of teaching them ready-made mathematical results. To mathematize means both to 
translate real-world situations into mathematical models and to develop those 
models further into more abstract and formal models. So, the task/lesson should not 
be based on a ready-made mathematical result presented to students. Instead, the 
task should allow the students to develop this result themselves. (to prevent 
mathematics as an isolated discipline, an isolated set of concepts and procedures).  
The reality principle. The starting point of teaching should be what is meaningful and 
relevant to students. A didactical phenomenology leads designers to find rich 
situations that allow for mathematical organization using informal version of the 
targeted learning goals.   
The emergent models principle. Teaching a concept should progress from situational 
models – models that refer to the context in which they are learned – to more general 
models that are independent of those situations and can be applied in more general 
situations. 
The intertwinement principle. Topics should not be taught in isolation. In contrary, 
many mathematical topics are heavily intertwined and should be taught that way.  
The interactivity principle. Create opportunity for students to share and reflect jointly 
on the outcomes of mathematization. 
The guidance principle. Provide the right amount of guidance. Task should invite and 
enable students to develop a multitude of strategies. The task should promote 
students’ independent exploration and experimentation with the problem. During the 
inquiry process the teacher should guide the students - not by providing them with 
answers, but as an experienced co-researcher who poses questions and thus drives 
the inquiry process. To provide the right amount of guidance is a balancing act: with 
too much direction, students’ inquiry is limited or even absent, thereby losing the 
learning potential. However, with too little direction students get stuck or lost, which 
eventually disengages them from the inquiry process. Let’s note that RME and TDS 
(next section) take different positions on the aspect of guidance. 

  
The next example illustrates how RME-principles can shape a task. 
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Example: Guided reinvention of the circle equation 
This task was developed in preparation for the first Dutch national conference on 
Lesson Study in 2017.   
 
Task: Find the equation for a circle with centre in the origin.  
 
The guidance is designed in advance in the shape of cards conveying hints and 
heuristics. Students could come to the teachers table to receive a suitable hint card 
in case they got stuck. For example: 
 

 
 

Draw a concrete circle with radius 5, 
and find points on it 

Look at rectangular 
triangles within a circle, 

with one point in the 
centre, one on the 

circle and one on the 
diameter 

A general point (𝑥𝑥,𝑦𝑦) on the circle has 
horizontal distance |𝑥𝑥| and vertical 

distance |𝑦𝑦| to the origin 

 
use the Pythagorean theorem 

 
  
Instead of teaching the circle equation as a ready-made result, students are invited 
to develop the equation and underlying ideas themselves (activity principle). This 
affords students to understand why the equation works (instead of just knowing how 
it works – being able to produce an equation for a circle): they make the connections 
circle – equal distance to the centre – distance computed using Pythagorean theorem. 
 
This task shows a certain interpretation of guided reinvention. Maybe, the teacher 
does not act as a co-researcher, but instead the teacher shares a crucial nudge, if 
students are stuck. It is interesting to note that this idea is in conflict with the 
devolution principle from TDS; more about this below. 
 
Another principle at work here does not come from TDS or RME: the principle of 
heuristic support. Students are supported in a different way from simply providing 
the next step. Instead, the cards suggest students to explore concrete examples (left 
top), or instead look to apply a general technique (left and right bottom). 
 

 
Design principles from other theories 
So far, this guide has emphasized design principles for inquiry-based teaching, 
originating from RME and TDS. However, design principles could concern many aspects 
and types of teaching. Let us present one design principle from a completely different 
perspective. 
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In Clark & Mayer (2016) the authors present a theory of e-learning. This theory is explicitly 
built around multiple design principles, grounded in classical theories on human 
cognition. As an example, we mention two principles from this theory 
 
The multimedia principle. Use words and graphics rather than words alone. 
The contiguity principle. Align words to corresponding graphics. 

 
Teachers’ design principles 
As pointed out in the introduction to design principles, teachers’ experiences can form 
the empirical basis of design principles. The TIME project is a collaboration and 
exchange between teachers and researchers. Design principles from RME and TDS are 
“tested” in classroom during study lessons, but as well are teachers own design 
principles. Researchers that acted as commentators were given the opportunity to 
reflect on teachers’ design principles and try to relate them to principles known from 
theory. Below we present a teachers’ design principle as formulated during a TIME 
project course. 
 
The dare to make mistakes principle. When students share their work, create a “safe 
space” in which they feel comfortable to present mistakes and experience how they 
can learn from them. How to do this? The teacher needs to recognize mistakes and 
explore them with the students. One way to stimulate this is to have a “Best mistake 
of the day”-prize. The teachers present TDS as theoretical background for this 
principle, since it emphasizes the importance of formulation and separates this from 
validation. From personal experience teachers motivate this principle by pointing out 
how this activates students, in particular also those with low self-esteem with respect 
to mathematics. 

 
Another teachers’ principle was: The probability-through-repeated-experiments-principle. 
Introduce probability and statistical notion by letting students perform repeated 
experiment, like throwing dice. One could argue that this is a more concrete 
implementation of the reality principle of RME. In fact, recent design research has 
elaborated this design principle into a learning trajectory, which has been studied in 
detail (Droogers, 2019). This is the type of connection that could be made (by e.g. the 
external commentator in a Lesson Study) between a teachers’ principle and a principle 
from educational research to further enrich the former, in particular to shed light on the 
aspect of a design principle that is not always provided: why would this work? 
 
Conflicting principles 
Design principles, whether coming from theory or teachers, may be conflicting. Different 
norms and values— possibly expressed in different theoretical frameworks— may lead 
to conflicting design principles. Formulating design principles actually helps pinpointing 
the differences in a sharp way and attribute them to underlying values, and theoretical 
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and empirical arguments. In this way, the formulation of design principles facilitates the 
designers in discussing their convictions and expectation with respect to a design.    
 
For example, the adidactic potential principle from TDS seems to be in conflict with the 
guidance principle from RME. In TDS, it is essential that the student interacts with the 
milieu in an adidactic phase, without intervention of the teacher, whereas in RME the 
teacher is allowed to guide the inquiry process by posing questions and providing 
heuristic suggestions. From TDS it can be argued that providing hints is a form of 
continuous re-devolution of the problem, destroying the adidactic potential: by adapting 
the problem on students’ demand the didactic contract is not challenged anymore. 
There is even a name for this phenomenon in TDS: the Topaz effect (Brousseau, 2002). 
However, recent research shows that students can be supported through heuristic/hint 
cards to improve their metacognitive skills and focus on general mathematical 
techniques as they try to solve problems (Bos, 2022). What can be learned from this is 
that a theoretical framework often forms a coherent whole, that does not allow simply 
adding in principles from another theoretical framework.  
 
Concrete design advice 

- For IBMT, implement design principles from TDS and RME. 
- For other issues of design consult theory to find many other design principles. 
- As a designer/teacher, formulate your own principles; use these principles to 

discuss a design in a group of designers; invite researchers to relate your own 
principles to existing theory. 

- Beware that design principles can be in conflict. Try to investigate what 
underlying arguments and values cause the conflict.  

- A coherent set of design principles from one theory does not always allow 
combination with any other design principle. 
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4. General design issues and choices  
4.1. Choosing a problem for IBMT 
Design for IBMT is often based on a problem: 

In IBMT a problem is more than a certain task, exercise or an activity. A problem is 
open in the sense that it requires students to engage in experimenting, hypothesizing 
about possible solutions, communicating hypotheses and possible solution 
strategies, and maybe pose further questions to be studied as a part of a process of 
its solving. (Winsløw, 2017) 

 
Choosing or designing a problem for IBMT is a major challenge. Both RME and TDS have 
principles addressing this issue: in particular, the reality principle, the emergent models 
principle, and the game or winner strategy principle. 
 
Additionally, we formulate some properties the problem should have: 

- Open formulation: it should invite to a variety of strategies and answers based on 
students’ prerequisites. The openness of such a problem prompts students’ 
curiosity and imagination, which drives the inquiry process. 

- A low floor and a high ceiling. It needs to be accessible to both the weaker and 
the stronger students so that both can be engaged in the inquiry process. If a 
problem is real and meaningful to students, this creates a low floor.  

4.2. Choosing a context 
Problems can be presented in a more or less elaborate context. As a designer, you can 
have various reasons for your choice. A didactical phenomenology may lead to a context 
rich in structures that may be mathematized. Such a design will appeal to students’ 
horizontal mathematization or modelling skills. A context may be chosen such that it is 
meaningful to students: They recognize and are familiar with the structures that are to 
be developed mathematically. Meaningful contexts can also be fully mathematical, 
without direct reference to the real world. A context may also be chosen to prove 
relevance of the topic to students. It can be powerful if contexts are rich and broad 
enough to support a whole subject or a range of topics, like mechanics as a context for 
differential calculus. 
 
There are many examples of ill-chosen contexts. A famous one is the taxi context, with 
start fare and a rate per distance. Why is this less strong? Most students don’t use taxis. 
If they use taxis, their parents are more likely to pay. Hence, taximeters are not part of 
their everyday life, and even if they are, they do not excite or spark the imagination. 
Moreover, taximeters actually don’t work this way, because they include more 
parameters, like time—although one could argue that often context need to be 
somewhat simplified to be accessible to students. 
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Vocational contexts could be interesting to study: how do modern professionals use a 
mathematical topic? The use of vocational contexts requires contextual knowledge and 
skills as well as connecting mathematical content-context knowledge and skills. It might 
be useful to interview a professional about these issues. One could investigate into four 
dimensions for designing tasks connected to the world of work: Context, Role, Activity 
and Product 3 . Designers could try to find authentic problems and reveal how 
mathematics is needed to solve them. The goal is to identify activities carried out by 
workers in the workplace (possibly with use of authentic tools) that translate to the 
classroom situation. The designer could analyse the professional role the workers have, 
and see if students could fulfil similar roles in classroom, and finally, try to see if the 
professional fabricates a product, that could be produced in classroom.   
 

Example. The work of the architect contains many mathematical aspects. The most 
accessible activities for secondary school students would be the designing and 
technical drawing. The role of communicator to the client can also be translated to 
the classroom situation. So, a suitable product might be a drawing of a design, 
including explanation of the choices made. This may lead to the task we sketch below. 
 
Task: The owner of an apartment building wants to build a new parking lot. You are 
the architect who is given this assignment. Your task is to design a parking lot meeting 
the requirement… The product you need to deliver is a technical drawing of your as 
well as a letter to the owner of the building explaining your design and the decision 
you made. The full task with a floor plan as a workplace artefact can be found here: 
https://www.fisme.science.uu.nl/toepassingen/22015/. 

 
Concrete design advice 

- For IBMT, choose problems with an open formulation, and a low floor/high 
ceiling. 

- Choose a context carefully, or leave it out. Ask yourself: what is the added value 
of this context? Is it rich? Is it meaningful? Does it add relevance? 

- Find out how the content is used nowadays to create a relevant and meaningful 
context for the students (at a workplace, in daily level or in other subjects). 

 
4.3. Choosing a tool 
Both teachers and students usually make use of tools as part of the teaching-learning 
process. This can be: a pen, notebook, ruler, compass, (graphical) calculator, 
software/apps, blackboard/whiteboard/smartboard/screen/projector and all sort of 
manipulatives, like blocks, pieces of string, disks, sticks, balls. A tool can have several 
purposes in education. In some cases, tools can play an essential role in the students’ 
learning process. A compass can be used not only to facilitate drawing circles, but 
instead also supporting the insight that a circle consists of all points of equal distance to 

 
3 Based upon findings from the Mascil project: https://mascil-project.ph-freiburg.de/index.html 

https://www.fisme.science.uu.nl/toepassingen/22015/
https://mascil-project.ph-freiburg.de/index.html
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the centre. Tools and objects to support learning are sometimes called manipulatives: 
see for example https://en.wikipedia.org/wiki/Manipulative_(mathematics_education) 
 
The diagram in Figure 4.1 specifies the functionality of IT-tools in education. 

 
Figure 4.1. A scheme for the functionality of IT-tools, translated from Drijvers et al., 2012 

A calculator is in many cases simply there to assist the teacher and students in 
calculations. Software is sometimes used to practice solving equations, giving instant 
feedback. In other cases software like GeoGebra is used to acquire a better conceptual 
understanding of, for example, the derivative of a function. 
 
Every tool a teacher brings to the classroom requires careful thought. What is the added 
value? How can it be used? Does it contribute or distract, or both? How difficult is it to 
use? Using tools optimally in classroom is a challenge for teachers. In Lesson Study 
there is a name for the art of using the blackboard: bansho. Similarly, using graphing 
software (like GeoGebra) for classroom instruction is a skill for teachers to develop. 
 
Bansho. In Lesson Study so much is importance is given to good use of the blackboard 
that there is a name for it: bansho, the art of blackboard use.  

 
Picture taken from Takahashi (2006) 

 
In Yoshida (2005) summarizes to roles of the blackboard:  

• To keep a record of the lesson 
• To help students remember what they need to do and to think about 

https://en.wikipedia.org/wiki/Manipulative_(mathematics_education)
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• To help students see the connection between different parts of the lesson and 
the progression of the lesson  

• To compare, contrast, and discuss ideas that students present 
• To help to organize student thinking and discovery of new ideas 
• To foster organized student note-taking skills by modelling good organization  

  
For students the challenge can be expressed by the following slogan 
 
 Use to learn versus learn to use. 
 
A teacher decides to use computer algebra software (say Mathematica) to let students 
experiment with the expansion of brackets in algebraic formulas—use to learn. Instead 
of experimenting, students spend all time learning the syntax of software—learn to use. 
On a positive note, the struggles with learning to use new tools can also offer 
opportunity to learn about the involved mathematics. In many cases learning to use a 
mathematical tool and learning the involved mathematics can and should go hand in 
hand. 
 
Concrete design advice 

- Every tool that is brought to the classroom for learning needs careful thought. 
What are the benefits and what are the challenges? 

- Become a bansho master! 
- Think about the balance between use to learn and learn to use 
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Epilogue 
This compendium contains advice on how to shape an educational design process, in 
particular for inquiry-based mathematics teaching and as part of Lesson Study. There is 
an overall outline of several aspect or phases of the process in chapter 1, details of 
analyses one could perform in chapter 2, a concept of design principles to facilitate 
discussion on design, and further interesting aspects, like problem, context, and tools, 
in chapter 3, 
 
This compendium has been developed as part of the TIME project and the ideas 
presented were tested as part of the process. The compendium is background reading 
for a course on educational design that was also developed in the project; and we advise 
you to try participate in the activities that this compendium supports.  
 
Educational design is a craft. According to common knowledge it takes 10.000 hours to 
master a craft; so, more than anything, we invite you to build this practice. Lesson Study 
is a very suitable form to perform this collaboratively and enjoy your colleagues support, 
feedback and expertise. Make it an adventurous joint inquiry! 
 
Final (concrete) design advice 

- Try to learn how to think beyond the traditional teaching approaches. 
- Learn to take risks.  
- It is okay to fail and learn from mistakes. 
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